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We study finite temperature properties of a generic spin-orbital model relevant to transition metal com-
pounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system
undergoes a phase transition, consistent with that of a two-dimensional Ising model, to an orbitally ordered
state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom
freeze out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a
rapid scrambling of the spin spectral weight away from coherent spin waves, which leads to a sharp increase
in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the
Fe-pnictide materials.
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Correlated materials exhibit intriguing phenomena arising
from the interplay between spin, charge, lattice, and orbital
degrees of freedom. Orbital degrees of freedom can emerge
in multiband systems such as 3d transition metal compounds.
In these systems, spins and orbitals are strongly coupled as
spin exchange is the dominant interaction between different
orbital occupations, which in turn support different spin or-
ders. This correlation can lead to a phase transition in one or
both variables, the collective effects of which can be ante-
cedent or subsequent to a lattice structural transition.1 A para-
digmatic example is manganites where orbital ordering is
essential in explaining the magnetic properties and phase
transitions.2

The Fe-pnictide superconductors3 display superconductiv-
ity in close proximity to magnetic order. The observed col-
linear �� ,0� magnetic order4 has been studied theoretically
from both weak-5 and strong-coupling points of view.6 In
particular, an antiferromagnetic �AF� coupled J1-J2 Heisen-
berg model on a two-dimensional �2D� square lattice �de-
picted in Fig. 1�a�� can give rise to an AF �� ,0� order when
J2�J1 /2.7 Alternatively, this �� ,0� order may be obtained
through an anisotropic J1a-J1b-J2 model,8 where one has
strong AF coupling in the x direction and ferromagnetic cou-
pling along the y direction, as shown Fig. 1�b�. Interestingly,
recent neutron scattering data9 indicate that the magnon en-
ergy is a maximum at momentum transfer �� ,��. This
strongly favors the J1a-J1b-J2 scenario which reproduces the
observed spin-wave dispersion �see Fig. 1�d��.

A possible microscopic origin for the anisotropy in the
J1a-J1b-J2 model is orbital ordering.10,11 When the orbitals
are ordered, the lattice distorts and the orbital lobe orienta-
tions can cause a vanishing effective hopping in certain di-
rections, as in one-dimensional edge-sharing copper
oxides.12 In conjunction with double exchange,13 orbital or-
dering, affecting the direct and superexchange processes, can
lead to even sign-changing anisotropic exchange interac-
tions. Proposals have been put forth that consider ordering
between the Fe 3dxz and 3dyz orbitals as a possible mecha-
nism for the observed magnetism of the Fe pnictides.10,11,14

These proposals remain controversial in part because early
band structure calculations,8 which agree well with a variety
of experiments, show a very small difference in the occupa-
tion of dxz and dyz orbitals in the magnetically ordered tetrag-
onal calculation.15 On the other hand, recent ab initio calcu-
lations suggest robust orbital order using Wannier orbitals.16

Indeed, if the magnon energy is a maximum at �� ,�� as
reported in Ref. 9, this implies not just a small anisotropy
due to, for example, structural considerations but an extreme
sign-changing one associated with additional broken
symmetry.11

In this paper, we address the following question: if the
anisotropy in exchange constants observed in neutron scat-
tering is related to orbital order, what other consequences
follow? To answer this, we consider the following spin-
orbital Hamiltonian relevant to the schematic in Fig. 1�c�:

FIG. 1. �Color online� Schematic representation of various
Hamiltonians: �a� the J1-J2, �b� the J1a-J1b-J2, and �c� the spin-
orbital models. At zero temperature the additional orbital degrees of
freedom freeze out and the spin-orbital model reduces to the
J1a-J1b-J2 model. �d� The magnon dispersion �k �in units of J1 /J1a�
calculated from linear spin-wave theory. Here J1b=−0.1J1a,
J2=0.4J1a in the J1a-J1b-J2 model and J2=J1 in the J1-J2 model.
The spin-wave energy forms a maximum at �� ,�� in the J1a-J1b-J2

model, which is a minimum in the J1-J2 model.
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H = J1�
i

�Si · Si+x̂nini+x̂ + Si · Si+ŷ�1 − ni��1 − ni+ŷ��

−
Jf

2 �
�ij	

Si · S j +
J2

2 �
��ij		

Si · S j , �1�

where ni is an Ising variable taking values 0 or 1 and Si is a
spin-1

2 operator: Si ·Si=S�S+1�, with S= 1
2 . The sums � 	 and

�� 		 run over nearest- and second-nearest neighbors, respec-
tively. This model describes a system consisting of two or-
bitals per site, with the occupation controlled by the Ising
variables: ni=0 represents orbital 1 occupied; ni=1 repre-
sents orbital 2 occupied.

When the interactions are dominated by an AF coupled J1,
the above model finds its lowest energy configuration in a
perfect ferro-orbitally ordered state corresponding to all
ni=0 or 1. Therefore, at zero temperature T=0 this Hamil-
tonian reduces to the J1a-J1b-J2 model with J1a=J1−Jf and
J1b=−Jf. On the other hand, the finite temperature properties
would be quite different due to orbital fluctuations and exci-
tations. In the following calculations we take the parameters
from neutron scattering data on CaFe2As2:9 SJ1a=50 meV,
SJf =6 meV, and SJ2=20 meV.

We are interested in the finite temperature spin dynamics
of these systems; however, there are few numerical methods
capable of accomplishing this in a controlled manner. We use
the exact diagonalization �ED� technique, which has been
utilized extensively to investigate both zero and finite tem-
perature properties for various quantum lattice models.17 We
use N=16 site square plaquettes, already requiring a large
computational effort due to the additional orbital degrees of
freedom. Lattice translation, rotation, reflection, and Ising-
orbital inversion symmetries reduce the 216 Ising configura-
tions to 733 distinct ones. We fully diagonalize the Hamil-
tonian in these Ising sectors and calculate dynamical
quantities.

Our main results are as follows. �i� In a purely 2D system,
where in accord with the Mermin-Wagner theorem the spin-
rotational symmetry cannot be spontaneously broken except
at T=0, the orbital degrees of freedom undergo a phase tran-
sition at a temperature scale of 
0.2J1 set by short-range
magnetic order. �ii� At temperatures below 0.1J1, the Ising
variables are completely frozen and the model maps onto the
J1a-J1b-J2 model. Above T=0.1J1, the onset of orbital exci-
tations causes a scrambling of the spin spectral weight, lead-
ing to sharply diminished spin-wave peaks. �iii� There is a
sudden increase in the uniform magnetic susceptibility just
below the phase transition. Above the transition, the uniform
susceptibility continues to increase up to fairly high tempera-
tures, with a slope significantly higher than that in the
J1a-J1b-J2 or the J1-J2 model. �iv� The behavior of the spe-
cific heat and the order parameter at the transition are very
close to the corresponding Ising model on the same lattice
once the temperatures are scaled by the peak values. This
suggests that the transition is continuous and of second order,
belonging to the universality class of the 2D Ising model.

Figure 2 shows the specific heat CV and uniform magnetic
susceptibility �m for the spin-orbital model; for comparison
we also plot the same quantities for the spin-1

2 J1a-J1b-J2

�with J1b=−0.1J1a, J2=0.4J1a� and J1-J2 �with J2=J1� mod-
els. A main difference in CV between the spin-orbital and the
other two spin-only models is the sharp peak at T
0.23J1,
an indication of a phase transition.

For an AF ordered ground state, �m will grow as T in-
creases from T=0 and then turn down at some characteristic
temperature associated with short-range magnetic order. �m
at T=0 should have a finite value due to gapless excitations
�Goldstone modes� intrinsic to each model in the thermody-
namic limit. This is not captured in ED due to finite-size
effects. Nonetheless, one expects the results to be qualita-
tively valid near the peak and quantitatively valid above it.18

With our parameters, the energy to flip a spin in the AF
ground state is approximately J1+Jf +2J2�2J1. Hence the
T=0 �m should be comparable to that of an isotropic square-
lattice Heisenberg model with the same J1.19,20 One then ex-
pects for both the spin orbital and the J1a-J1b-J2 models an
identical susceptibility below T=0.1J1, with a magnitude of

0.05 /J1. The sharp difference is the sudden increase in �m
between T=0.1J1 and the phase transition 
T=0.2J1.

A direct way to locate the orbital ordering transition tem-
perature Tc is through the orbital-Ising susceptibility �I,

�I �
1

N
�
�

P��Nt − N/2�2. �2�

The sum on � is over the 216 Ising configurations, with P� as
the probability of the �th configuration. Nt��i ni is the sum
of the Ising variables on the lattice tied to the �th Ising
configuration. According to the definition, �I is N /4 at T=0
and monotonically decreases to the configuration averaged
value as T increases. The peak in d�I /dT is a measure of Tc
which happens at 
0.23J1, as indicated by Fig. 3�a�.

We can define an orbital entropy Sorb�− 1
N�� P� ln P�,

which approaches ln�2� at high temperature. On the other
hand, the total system entropy Ssystem incorporating both spin
and orbital degrees of freedom �obtained by integrating CV /T
with respect to T� approaches ln�4� per site as T increases.
Figure 3�b� indicates that Sorb is completely exhausted soon
after Tc, saturating much faster than Ssystem. We have checked
that the behavior of the Ising variables in the spin-orbital
model is quantitatively very close to the pure Ising model
once the temperatures are scaled according to their corre-
sponding CV peak values. This suggests that the orbital phase
transition is in the 2D Ising universality class where the finite

FIG. 2. �Color online� Plots for �a� the specific heat CV and �b�
the uniform magnetic susceptibility �m for the three models consid-
ered. The temperature T is expressed in terms of J1 �or J1a�. Com-
pared to the other two spin-only models, there is a sharp peak in CV

and a larger slope in �m in the spin-orbital model.
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temperature phase transition is continuous and of second or-
der. A more definitive conclusion would require study via
other numerical techniques such as quantum Monte Carlo on
larger systems. This, however, may face minus sign prob-
lems because the spin-orbital model is frustrated.

We next turn our focus to the spin dynamics of the spin-
orbital model by studying the dynamic form factor S���q ,��,
which is the Fourier transform of the spin-spin correlation
function �Si

��t� ·Sj
��t��	. We calculate Szz�q ,�� via both ED

and linear spin-wave theory. Apart from the small energy gap
in ED due to finite-size effects, the spin-wave dispersions
obtained from both methods are compatible �see Fig. 4�a��.
Neutron scattering on Fe-pnictide parent compounds indi-
cates that the magnon energy is a maximum at �� ,��. This
behavior, absent in the J1-J2 model, is captured correctly by

the J1a-J1b-J2 model and hence the T=0 spin-orbital model.
At finite temperatures, orbital fluctuations start to play a

role. The spectra in the spin-orbital model broaden much
faster than the J1a-J1b-J2 model and show anomalous shifts
to low frequencies. Figures 4�b� and 4�c� show the tempera-
ture evolution of spin wave at �� ,�� obtained from ED. At
temperatures higher than 
0.3J1, only incoherent spin waves
survive in the spin-orbital model. In contrast, in the
J1a-J1b-J2 model the coherent spin waves persist to a tem-
perature higher than T
0.6J1. This feature can be seen also
in the �-integrated form factors S���q��
d�S���q ,��. For
the spin-orbital model, from T=0 to 0.4J1 the dominant peak
at �� ,0� decreases by 25% in intensity, while for the
J1a-J1b-J2 model it requires a temperature higher than
T=0.8J1 to show a similar reduction �see Fig. 4�d��. Thus
finite temperature neutron spectra can distinguish these mod-
els.

Before we continue to discuss the relevance of this study
to the Fe pnictides, a few comments are in order. The issue
regarding the correlation strength in the Fe-pnictide materials
is controversial and currently under debate. Recently, x-ray
absorption data on several Fe-pnictide compounds revealed
that the on-site Coulomb repulsion was smaller than the
bandwidth, but they also found a substantial Hund’s coupling
JH=0.8 eV between the Fe 3d orbitals.21 Moreover, there is
no particular energy scale above which damped spin waves
are found;4 this absence of a Stoner decay strongly favors a
picture based on localized moments.

In many regards, the pnictides are schizophrenic, having
aspects such as metallicity and strong covalency where cor-
relations play a minor role21,22 and antiferromagnetism and
local properties which derive directly from the strength of
Hund’s coupling. Therefore a model based on local moments
which takes aim at the magnetic properties of the pnictides
and other transition metal oxide is completely in line with
the findings in Ref. 21 and more recently with observations
from optical conductivity measurements.23 Our model fo-
cuses on a subset of localized orbitals in connection with
magnetism but neglects the fact that the five Fe d orbitals in
Fe pnictides are not strongly crystal field split.

Certain details of the model can be modified easily with-
out changing the essential features. For example, there can
be a direct coupling between the Ising variables reflecting
lattice effects and quadrupolar couplings. In addition, the lo-
cal environment of As positions could modify local field
screening and exchanges. These changes will alter the orbital
gap and transition temperature but not the overall picture. We
will make our comparisons only in semiquantitative terms.

With this in mind, the spin-orbital model captures many
features of the uniform susceptibility in the pnictides.24 For
example, in BaFe2As2 the susceptibility in emu/mol is
0.6�10−3 at T=0; it sharply increases near T=150 K to
about 0.9�10−3 and then continues to increase linearly to
about 1.5�10−3 at T=600 K. If part of the susceptibility is
a weakly temperature dependent Pauli term, this implies an
increase by a factor of about 3 between T=0 and
T=600 K. Our finite-size calculations can be converted25 to
emu/mol by multiplying the susceptibility by a factor
�8g2�0.0938� /J1, where J1 is in kelvin and a factor of 2
comes from the two Fe atoms per mole of the material. With

FIG. 3. �Color online� �a� The orbital-Ising susceptibility �I and
its derivative with respect to T in the inset. �b� The total system
Ssystem and orbital Sorb entropy in the spin-orbital model. In the
vicinity of the phase transition 
R ln 2 entropy is lost.

FIG. 4. �Color online� �a� T=0 Szz�q ,�� for the
spin-orbital/J1a-J1b-J2 models. �b� and �c� Finite temperature
Szz�q ,�� at �� ,�� obtained from ED for the spin-orbital and the
J1a-J1b-J2 models, respectively. The temperature goes from
T=0.1J1 �the blue curve� to T=1.0J1 �the red curve�, with a tem-
perature increment between each curve 
0.08J1. A highly incoher-
ent spin dynamics is observed in the spin-orbital model. �d� Finite
temperature � integrated form factor Szz�q� at �� ,0�.
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J1�1000 K, this gives a susceptibility in cgs units of order
10−3 at 500 K, which comes down by about a factor of 3–4
by T=0 including a sharp drop below the transition.

In the 1111 pnictide family, two phase transitions at
nearby temperatures have been reported, a structural transi-
tion at higher T and a magnetic transition at lower T. In
contrast, only one simultaneous structural and magnetic tran-
sition is found in the 122 family. This is explained naturally
in terms of three-dimensional �3D� couplings. Orbital order-
ing driven by magnetism requires the prior development of
short-range spin order. A 3D system with strong interplanar
coupling would therefore lead to simultaneous spin and or-
bital order. In contrast, for a weakly interplanar coupled 2D
system orbitals order when short-range spin order develops,
but spins only order on the scale of interplanar couplings.
This therefore leads to two separate transitions. These obser-
vations are indeed consistent with the two different pnictide
families. This aspect also has been suggested for J1-J2
Heisenberg models.6 However, one important difference is
that in the spin-orbital model 
R ln 2 entropy is lost in the
vicinity of the transition; it is likely significantly smaller in
the J1-J2 models. It is noted that in the Fe1+ySexTe1−x sys-
tems a comparable amount of entropy change is found near
the AF transition.26

In summary, we have studied a model system that cap-

tures the physics of coupled spin and orbital degrees of free-
dom. Such a system apparently undergoes a continuous
second-order phase transition to an orbitally ordered state at
a temperature set by short-range magnetic order. The onset of
orbital excitations and fluctuations cause a highly incoherent
spin dynamics, leading to a sharp increase in uniform mag-
netic susceptibility. The susceptibility continues to increase
up to fairly high temperature above the phase transition, with
a large slope comparable to those observed in the pnictides.
Our calculations of dynamic structure factors at finite tem-
peratures serve as clear predictions of the spin-orbital model,
which can be tested by further experiments. In addition to the
pnictides, the model should be generally applicable to other
systems with orbital degeneracy, with the strengths and/or
signs of the exchange constants dependent on the micro-
scopic details.
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